The number of load-bearing wires in the outer Bundles |
Rope Composition Examples |
Number of single fracture to be discarded ropes | |||||||
---|---|---|---|---|---|---|---|---|---|
M1, M2, M3, etc. classification group for M4 Mechanisms | M5, M6, M7, etc. classification group for M8 Mechanisms | ||||||||
n | Rope In Neck | Rope In Neck | |||||||
winding cross | flat winding | winding cross | flat winding | ||||||
6d | 30d | 6d | 30d | 6d | 30d | 6d | 30d | ||
n=50 | 6x19(9/9/1)* | 2 | 4 | 1 | 2 | 4 | 8 | 2 | 4 |
51=n=75 | 6x19(9/9/1)* | 3 | 6 | 2 | 3 | 6 | 12 | 3 | 6 |
76=n=100 | 4 | 8 | 2 | 4 | 8 | 16 | 4 | 8 | |
101=n=120 |
8x19(9/9/1)* 6x19(12/6/1) 6x19(12/6+6F/1) 6x25FS(12/12/1)* |
5 | 10 | 2 | 5 | 10 | 19 | 5 | 10 |
121= n=140 | 6 | 11 | 3 | 6 | 11 | 22 | 6 | 11 | |
141=n=160 | 8x19(12/6+6F/1) | 6 | 13 | 3 | 6 | 13 | 26 | 6 | 13 |
161=n=180 | 6x36(14/7+7/7/1)* | 7 | 14 | 4 | 7 | 14 | 29 | 7 | 14 |
181=n=220 | 8 | 16 | 4 | 8 | 16 | 32 | 8 | 16 | |
201=n=220 | 6x41(16/8+8/8/1)* | 9 | 18 | 4 | 9 | 18 | 38 | 9 | 18 |
221=n=240 | 6x37(18/12/6/1) | 10 | 19 | 5 | 10 | 19 | 38 | 10 | 19 |
241=n=260 | 10 | 21 | 5 | 10 | 21 | 42 | 10 | 21 | |
261=n=280 | 11 | 22 | 6 | 11 | 22 | 45 | 11 | 22 | |
281=n=300 | 12 | 24 | 6 | 12 | 24 | 48 | 12 | 24 | |
300 |
0,04n | 0,08n | 0,02n | 0,04n | 0,08n | 0,16n | 0,04n | 0,08n |
Filler materials that are considered as load-carrying cords and are therefore kept out inspection. Multi-strand bundles can be seen just outside the ropes is taken into account.
the calculation of the number of visible broken wires, external beam stars on the outer wires integer values are rounded to the table for the thicker ropes with (*) are shown.
There are two visible ends of a broken wire.
d = Rope nominal diameter